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Some methods for flows past blunt slender bodies 
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It is suggested that the use of prolate spheroidal co-ordinates in certain problems 
involving slender bodies may lead to results which not only are more likely to be 
uniformly valid for blunt bodies, but in many cases require less complicated 
analysis than results obtained by standard methods which use cylindrical 
co-ordinates. The method is developed for a simple problem in potential theory 
and is then applied also to a problem in Stokes flow, yielding a procedure for 
obtaining the Stokes drag on a slender body of arbitrary shape. For comparison 
purposes, consideration is also given to the use of both cylindrical and di-polar 
co-ordinates, and as a by-product of the comparison of results on cylindrical and 
spheroidal systems some new simple formulae involving Legendre polynomials 
are obtained heuristically, and then rigorously proved. 

1. Introduction 
The purpose of the present paper is to introduce some new techniques which 

may prove useful in treating a variety of problems where a basic flow is disturbed 
by a slender (i.e. needle-like) body. The emphasis on clear description of tech- 
niques means that the problems treated in this paper are highly idealized, but 
i t  is expected that extensions to more practical flows would involve only a little 
extra effort in conception or manipulation. Thus we consider only bodies of 
revolution in a uniform stream which is parallel to their axis and is of infinite 
extent, and we assume incompressibility. We then investigate only the two 
formal limiting versions of the Navier-Stokes equations, i.e. that limit of zero 
viscosity which gives irrotational potential flow, and the limit of infinite viscosity 
giving Stokes flow. 

Possible generalizat,ions of these idealized cases are unlimited, and some are of 
great practical importance; we need merely mention amongst such generaliza- 
tions linear slender body problems in acoustic, optical or water-wave diffraction, 
cavitating flow , Oseen flow, subsonic or supersonic aerodynamics, steady ship 
motion, and many other fields. Besides extension to other physical conditions, 
the methods may also be applied with other geometrical configurations. Thus 
for instance the extension to the case of non-axisymmetry is possible in every 
case with increase only in manipulative, not conceptual, difficulty. Also, most 
of the work may be carried over by analogy to treat the case of thin (i.e. wafer- 
like, or nearly planar, as distinct from needle-like, or nearly linear) bodies. 

f Present address : David Taylor Model Basin, Washington, D.C. 20007 
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The main proposal of this paper is that, wherever practicable, slender body 
theory be attacked via prolate spheroidal rather than cylindrical co-ordinates. 
The question of choice of co-ordinate system is always a bothersome one, and of 
course one always tries to formulate any problem in applied mathematics in a 
manner independent of the system chosen. But the fact remains that slender 
body theory is a co-ordinate perturbation process where, in the ‘classical’ 
approach (e.g. Thwaites 1960, p. 387) the assumption is made that the body lies 
in a region for which the cylindrical co-ordinate r is small in some sense. Now 
there is no a priori reason for preferring cylindrical co-ordinates, and there soon 
appear some good a posteriori reasons why this is a bad choice. 

The main motivation for considering alternative formulations of slender body 
theory is the fact that the approach via cylindrical co-ordinates leads immediately 
to difficulties a t  the ends of a finite blunt body, such as velocities wrongly pre- 
dicted to be infinite rather than zero. There are of course already methods (in 
thin aerofoil theory, see again Thwaites 1960) enabling corrections to be made 
for this unpleasant behaviour, but these still retain the cylindrical co-ordinate 
basis, and it was thought that a new approach might be more fruitful. The 
defects in the cylindrical co-ordinate approach are more serious in the ship 
problem (Vossers 1962; Tuck 1963) and in Stokes flow than in aerodynamic 
problems, and the end-effects introduced into these problems by use of these 
co-ordinates seem to be irremovable. 

The two co-ordinate systems tried in this paper are prolate spheroidal and 
di-polar, although only the first of these is seriously recommended as a practical 
proposition. In  fact, it  became apparent that the analysis required for the use of 
spheroidal co-ordinates is often less involved than that required for cylindrical 
co-ordinates, so that they may be recommended even when end-effects are not 
present. I n  a sense, of course, the end-effects from cylindrical co-ordinates are 
always present, for even if the body is cusped so that no infinities are predicted, 
we may expect that the numerical accuracy of the theory is bad in any region of 
high curvature. One would perhaps expect from a iialve point of view that the 
above mentioned co-ordinates would be more appropriate than cylindrical 
co-ordinates for finite bodies, since the co-ordinshe surfaces include examples 
(prolate spheroids and spindles, respectively) of such bodies. There are better 
reasons than this, however, and these are discussed in the text. 

On the other hand, it is of course necessary to find a set of solutions to the 
governing partial differential equation in prolate spheroidal co-ordinates, and 
this may not always be possible or easy in cases more complicated than those 
treated in this paper (although for most of the extensions mentioned earlier 
it is certainly possible). One also lacks techniques like Fourier transforming 
in the streamwise direction, although if an integral transform involving 
Legendre functions is needed the one discovered by Clemmow (1961) may prove 
useful. 

Nevertheless, there still remains a large class of practical linear (or linearizable) 
problems for which the use of spheroidal co-ordinates is possible and not difficult; 
the ease with which the results on Stokes flow are obtained in $ 7  may be 
taken to illustrate this. 
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As a by-product of the treatment of slender body potential theory by 
spheroidal co-ordinates in $3,  some new results have been discovered concerning 
Legendre polynomials. I n  effect, the result obtained is an expansion for the 
reciprocal l / ~ x l - x 2 ~  of the distance between two points xl, x2 on the real line 
between 1 in terms of Legendre polynomials of arguments x1 and x2 (the 
modulus sign is significant; analogous expansions for l /(xl  - x2) are of course well 
known; Erdelyi 1953, $5  3.10.10 and 3.14.7). This expansion is typical of a class 
of expansions which may be obtained heuristically by comparing slender body 
theories in various co-ordinate systems with that using cylindrical co-ordinates; 
an expansion in conical functions is suggested from the work on di-polar co- 
ordinates but is not explicitly found in the present work. A rigorous proof by 
induction of the result on Legendre polynomials is given in an Appendix. 

2. Slender body potential theory via cylindrical co-ordinates 
Slender body theory is often taken to be a branch of supersonic aerodynamics, 

since it is in this field that most of its applications have appeared. However, the 
formal differences between supersonic and subsonic slender body theory are 
slight (for example, Laplace transforms are used instead of Fourier transforms) 
and the subsonic theory is a simple generalization of incompressible theory, so 
there is some justification in neglecting compressibility in an exposition of 
techniques. Thwaites (1 960) has given a treatment of incompressible theory which 
shows the strong analogy with the supersonic theory presented by Ward (1949). 

One way of looking at 'classical' slender body theory (but not the only, or 
necessarily the most profitable way) is to imagine the body replaced by a line 
distribution of sources. This is logical if the problem is viewed as an asymptotic 
one, since when the body shrinks down to its limiting axis the fluid occupies the 
whole space except for the axis itself, and the velocity potential must be an 
analytic function everywhere except on this axis. To fix ideas, let us set up a 
cylindrical co-ordinate system (x, r )  with the uniform stream U in the positive 
x direction. Then we shall assume that the total velocity potential may be 

(2.1) 

for some, so far arbitrary, function a(x) describing the density of the source 
distribution. For small but non-zero slenderness, equation (2.1) requires that 
the potential can be continued analytically inside the body as far as the axis, an 
assumption that is frequently unjustified, but let us for the moment assume that 
there is a class of bodies for which it is justified. 

Now i t  can be shown, either by Fourier transforming the disturbance potential 
(Thwaites, p. 387) or directly from the form (3.1) (Goldstein 1960, p. 184; see 
also Appendix I), that for small r 

$h = Ux + a(x) log r + b(z) + E, (2.2) 

where the error E tends to zero as r 1 0 ,  and where 
1 "  da(5)sgn(x-6)log3lx-~I (2.3) 
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In  fact, if the approximation ( 2 . 2 )  is to hold uniformly in x ,  certain regularity 
conditions must be satisfied by a(x) ,  and in Appendix I it is shown rigorously that 
if a(x )  is bounded and continuous, has a bounded and piecewise continuous 
derivative, and is (absolutely) integrable over the whole real x-axis, then the 
error term E is at most of order rk for small r ,  uniformly with respect to x. By 
considering further terms in the asymptotic expansion (the so-called 'inner 
expansion') begun by (2.2), it is easy to see that the least possible order of E is 
r210g r ,  but this would only be achieved uniformly if derivatives of a(x)  existed 
everywhere to all orders. 

The function a(x)  is still arbitrary, and is to be found from the boundary 
condition on the body surface. In  the axisymmetric case, if the body is described 
by the equation r = ro(x) 

then the boundary condition of zero normal velocity requires 

a$ a$ 
- a? = rA(x)- ax on r = ro(x), 

whence ( 2 . 2 )  gives, to highest order in ro, 

a(x)  = Ur,(x)rA(x) 

= (U/2n)  X'(x), 

(2.4) 

( 2 . 5 )  

(3.6) 

where X(x)  is the area of cross-section. It can easily be shown that the result ( 2 . 6 )  
holds also for non-axisymmetric bodies. 

In  practice, the above regularity conditions on a(x)  therefore mean that the 
body surface itself, as defined by ro(x) in the present case, must be smooth. But 
even if the internal surface is smooth to a high order, there will still usually be 
trouble a t  the ends (unless the body is infinitely long, in which case the inte- 
grability condition requires its slope to tend to zero suitably rapidly). In  fact, 
from (2.5), we see that the above conditions are violated at an end x = 0 if r0(x) 
does not vanish a t  least as fast as x ,  so that for instance a blunt body with finite 
curvature a t  its ends violates the conditions. 

Of course the above conditions are sufficient for the potential only, and do not 
guarantee small errors on differentiation of ( 2 . 2 )  to give velocities. This is well 
illustrated by calculating the velocity magnitude on the body in the form 

(3.7) 

(the ordcr of the error term given is that of the next term in the asymptotic series 
and is not therefore a uniform bound in general). Clearly for a blunt body such 
that ro 23, we have q2 --f co like 1/x near x = 0, instead of vanishing as it should 
to give a stagnation point. But also in the case when ro x ,  it follows that 
n'(x) 1 so that q2 behaves like logx near x = 0; that is, the velocity is wrongly 
predicted to tend to infinity logarithmically near the nose of a cone-shaped body. 

These end-effect troubles have long been known in thin aerofoil theory, and 
there are methods (often empirical) for avoiding them. However, Lighthill (1951) 
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has proposed a systematic method of treating blunt aerofoils using a co-ordinate 
stretching method, and his method may be carried over almost unchanged to 
slender-body theory. Nevertheless, we now suggest two different approaches 
which achieve similar ends in a more straightforward manner. 

3. Slender body potential theory via spheroidal co-ordinates 
It is clear that the end-effect troubles described in the previous section arose 

simply because we chose to work with an unsuitable co-ordinate system. Thus 
we apply the body surface boundary condition in a region of small r such that 
ajar is large compared with ajax (when applied to the disturbance potential 
$ - U z ) ;  that is, we are approximating normal derivatives by radial derivatives. 
But this cannot be a sensible thing to do near the end of a blunt body, where the 
normal is in the x, not the r ,  direction. Lighthill’s method distorts the cylindrical 
co-ordinates in the neighbourhood of the ends in such a way that the normal 
direction is correctly approximated by the distorted r direction, and small 
modifications to  formulae like (2.7) can be derived from his method to eliminate 
the difficulties of end-effects. 

However, a more natural approach is to discard the cylindrical co-ordinates 
altogether in favour of systems which fit the physical situation better. We have 
chosen to discuss the use of either prolate spheroidal or di-polar co-ordinates; 
other choices are possible, but these give the simplest results. 

Prolate spheroidal co-ordinates (t, 7) may be defined by their relationship with 
cylindrical co -ordinates as follows: 

where 1 is a representative length (see e.g. Lamb 1932, p. 139; Hobson 1931, 
p. 142). Sometimes it is convenient to write p = cos 6, 5 = coshr, and use (p, 5) 
as co-ordinates; even more convenient in the present context is the ‘mixed’ 
combination (p, 7) which we shall adopt henceforth. Surfaces p = constant are 
hyperboloids of revolution with foci a t  x = & 1, r = 0. Similarly, surfaces of 
constant 7 are prolate spheroids with the same foci; 7 = 0 is that part of the 
x-axis between x = 

It is clear that 7 is somewhat analogous to r ,  and in particular that if 7 is small 
then r is necessarily small (although the converse is not true). Thus for 7 small, 

1, while 7 = + co is the surface at infinity. 

we have 

(3.2) 

i.e. for small 7,  p becomes the non-dimensional x co-ordinate xll, while 

7 + r(12 - x2)-k 

Now- suppose we have a body whose equation in spheroidal co-ordinates is 

7 = ro( lc )  
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with yo small. Then, approximately, the equation in terms of cylindrical 
co-ordinates must be 

Thus if yo tends to finite values near p = 1, then the body has finite curvature 
at  the ends. If q,, behaves like (1 -p2)) the body has cone-shaped ends, while if 
T,, tends to zero more rapidly than this the body is cusped. 

Tvpical solutions of Laplace's equation in these co-ordinates which vanish at  
infinity are multiples of - 

Pnk)  Qn(6) 
(Lamb 1932, p. 140), where Pn and Q, are the usual solutions of Legendre's 
equation. Let us assume that the potential for flow past the slender body 
q = r0(p) can be written as a linear combination of these functions in the form 

to 

Q = U X - U ~  C anQn(coshr)Pm(p), (3.4) 

for some sequence of real numbers a,. In order to apply the boundary condition 
on the body surface we require a knowledge of the behaviour of this potential for 
small values of 7. Now for small q, 

?L=O 

-Qn(coshr) = l og%r+~n ,+0(~210gq) ,  (3.5) 

where fT, = 1 + g + ; +  ...+ l/n ( g o =  0) (3.6) 

$5 = U x  + UZCc(p) log $7 + UZP(p) + O(aq2 log q ) ,  (3.7) 

(Erdelyi 1953, equation 3.9.7). Hence the inner expansion begins 

m 
where 

and (3.9) 

The functional relationship between a(p) and P(p) is implicitly exhibited by 
the pair of equations (3.8) and (3.9), and the best method of calculating P(p) for 
given a(p) would usually be to calculate the Fourier-Legendre coefficients an 
first. However, if desired, the relationship may be shown as an explicit integral, 
for, on using the orthogonality relations for the Pn, we have 

where the kernel K ( p ,  p') takes the form 

(3.10) 

(3.11) 

This series will be summed explicitly later. 
Equation (3.7) bears a striking resemblance to equation (2 .2 ) ,  and this is no 

coincidence. Notice that here also the coefficient of the logarithm of one co- 
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ordinate is an arbitrary function of the other co-ordinate, while the ‘constant 
term’ is a definite functional of this coefficient. 

Now the inner boundary condition on the slender body = v,,(,u) is 

Hence, on substituting equation (3.7) and retaining terms of highest order in ?lo, 
we have 

4”) = (1 -P2)  Vo(P) d ( P )  -P%(P) 

= d/dP [i( 1 - /h2) ~ ~ ( , L L ) ] .  (3.12) 

But this is equivalent to equation (2.6) since by (3.3) we have approximately 

a U 
ax 377 

UZlx(,u) = CT---[&r3.r)] = -S’(x) = a(x ) .  

Thus once again the coefficient of the logarithm is U/2n= times the streamwise 
derivative of the cross-sectional area. This is not surprising, since approximately 

log = log r - log ~(12 - x2)+, 

so that from (3.7) we can re-derive the inner expansion in cylindrical co-ordinates. 
We should also expect that  the constant terms are the same, which implies that 

b ( x )  = uEp(x/z) - .(x) log 2(12- x2)k 

Since both b(x) and p(p,) are defined by integral functionals of a(x) = UEa(p), this 
in turn implies a relationship between the kernels in equations (2.3) and (3.10). 

Now in the present case when a(x )  is identically zero for 1x1 > E ,  integrationof 
(2.3) by parts gives 1x1 < I: 

Hence 

or 

Thus we have obtained the result 
m 1 

K(p,  u’) = ___ - 3 (2n+  1)  unPn(p)Pn(p’). 
IP-P’I - -n=o 

(3.13) 

This expansion appears to be new in the theory of Legendre polynomials. By 
orthogonality, equation (3.13) implies and is implied by the integral forniula 

(3.11) 

which also appears to be a new result. Since the above argument leading to these 
results is a circuitous one incidental to the main objectives of this section, a 
direct proof of (3.14) by induction is given in Appendix 11. 

40 Fluid Mech. 18 
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Returning to the slender body problem, let us for purposes of comparison 
evaluate again the velocity magnitude on the surface of the body. The exact 
formula may easily be seen to be 

which has the inner expansion 

(3.15) 

Notice that we have not been quite consistent in retaining the term y&) in the 
denominator rather than expanding in a binomial series. This artifice, however, 
enables the formula to become uniformly valid even for a blunt body, for if yo 
takes finite values near p = 1 then q2 vanishes there to give the required 
stagnation point. This is the type of modified formula which can be derived from 
Lighthill's theory and other theories for blunt aerofoils. 

(1  -p2)&, a' takes finite values at  the ends, 
so that just as for the cylindrical co-ordinates expression (2.7), the formula (3.15) 
is not uniformly valid since it predicts logarithmically infinite velocity at  the 
ends via the term 3a' log &yo. There is, therefore, a case for considering a further 
choice of co-ordinate system suited to this type of end, such as is given in the 
following section. For a cusped body finite values of q2 are predicted everywhere, 
but it is not certain that the theory is valid for such bodies; this question could 
be settled by an investigation of error bounds analogous to that in Appendix I, 
but it is thought in any case that the theory of this section would find its chief 
application to blunt bodies. 

As a special case we may consider flow past an exact prolate spheroid 
yo = constant. Then from (3.12) we have 

For a cone-shaped end, where yo 

from which equations (3.8) and (3.9) give 

Hence 

This expression may be shown to agree with the inner expansion of the exact 
expression calculated from Lamb's (1932, p. 141) formula for the exact velocity 
potential. However, it  may be wise at  this point to emphasize the trivial point 
that because spheroidal co-ordinates are used in this section we do not by any 
means imply that the theory holds only for spheroids, any more than the theory 
of the previous section holds only for cylinders ! All theories in this paper are 
designed for slender bodies of arbitrary shape. 
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4. Slender body potential theory via di-polar co-ordinates 
Di-polar co-ordinates (5, 7) may be defined by the equations 

I sin 7 
cosh 5 + cos 7 

r =  - 
1 sinh 5 

cosh 6 + cos 7 ’ 
x = -  

(Hobson, 1931, p. 449; Payne 1952; we use a slightly different notation which is 
more convenient for slender body purposes than that of Hobson). Once again 
7 is analogous to r ,  and small 7 implies small r .  

The details of the analysis for a slender body theory in these co-ordinates will 
not be reproduced here as some formidable manipulation providing little insight 
is involved. For a slender body described by 

the inner expansion is found to be 
71 = 710(09  

#J = ux + Ula(5) log +j7 + UlP(6) + O(av2 log v ) ,  (4.2) 

where 

and 

1 
37i-1 

N - -8 ’ (x ) ,  

(4.3) 

with a1(g) = a(<)( 1 + cash <)-$. 

The resulting velocity magnitude on the body is 

_ _  q2 - 1 + qb2 - )I;( 1 + cosh <)-I + 2( 1 + cosh 5) [a’ log illo + p’] + O(7: log v0). 
[P - 

(4.5) 

For the special case of an exact spindle, yo = constant, it  can be verified that 
this result agrees with a calculation of q2 /U2  based upon an expression for the 
Stokes stream function given by Payne (1952). 

I n  general the use of di-polar co-ordinates requires much more complicated 
analysis than that needed for either cylindrical or spheroidal co-ordinates (for 
instance, the formula (4.4) involves a very unpleasant integration), and the 
method can hardly be recommended except where it is absolutely necessary to 
avoid the logarithmic end effects suffered by the other two methods for cone- 
shaped ends. In  fact, if a minimum of calculation is the only criterion for 
deciding between the three methods and end-effects are not important, then 
spheroidal co-ordinates appear to be the best and the method of this section is the 
least satisfactory of the three. There are other factors to be taken into account, 
of course, the most important being the need to find a complete set of basic solu- 
tions in more general problems, and in this regard di-polar co-ordinates are again 
unsuitable. For instance, the scalar wave equation is separable in sph.eroida1 
co-ordinates but not in di-polar co-ordinates. 

40-2 
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5.  The Stokes drag of a spheroid 
Payne & Pel1 (1960) have given the following exact formula for the drag on 

a prolate spheroid y = yo = constant, when set with its axis parallel to the stream 
U in steady Stokes flow 

8np" Ul D = ~.____.. __.____ 

(1 + cosh2 yo) log coth +yo - cosh yo 

(with ,u* as the coefficient of viscosity). The properties of this formula are worth 
investigating in their own right, and also as a guide to what should happen in 
the general case. 

Now if yo is small we can approximate equation (5.1) in two stages, giving 

(6.3) 

At the first stage, represented by equation (5 .2 ) ,  only rational approximations 
have been made, and the error is a factor of order y;, while to obtain (5 .3 )  we have 
expanded (5.2) further in powers of l/logyo. One would expect that a formula 
such as (5 .2 )  might be of some practical utility, but that (5 .3 )  would be of no 
value quantitatively (one has, for instance, doubts as to whether to write the 
denominator as log $yo or log yo). All (5 .3 )  tells us is the semi-qualitative result 
that as the body shrinks down to its axis the drag vanishes like - 47r,u* Ul times 
the reciprocal logarithm of slenderness, with 'slenderness ' only vaguely defined 
(and in particular, arbitrary t o  the extent of a constant factor). 

These features of the drag of a slender spheroid are reproduced in the results 
for an arbitrary slender body. We should hope as our main objective to derive 
a formula like (5.2) which would have quantitative value (this difficult aim is 
only partly achieved in the sequel), and also to obtain a semi-qualitative result 
like (5 .3 ) .  The last objective is a comparatively easy task, and we shall be able in 
fact to prove that the result quoted above for spheroids holds in general. 

Other properties of the formula (5.1), though incidental to the main purpose 
of this paper, are of interest. Thus it is possible to show that a t  constant volume 

(+nl3 cosh vo sinh2 yo) 

or at constant surface a,rea 

(2nP sinh y,(sinh yo + cosh2 yo sin-l sech T ~ ) )  

there exists a unique non-trivial prolate spheroid which minimizes the drag. In  
the case of constant volume this occurs a t  yo 0.575; since this is of moderate 
slenderness, it is interesting to try minimizing (5 .2 )  a t  constant volume, which 
gives l;ro N 0.27. At constant surface area the true minimal spheroid is somewhat 
more slender (yo 0.26) so that the agreement with the slender body approxi- 
mation (yo N 0-16) is slightly better. These results, while not showing close 
quantitative agreement, at least suggest that one possible use of a slender body 
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theory for an arbitrary body shape is in seeking an approximation to the shape 
which gives least drag. Another method of tackling this minimization problem 
would be to find the drag on a body which is nearly spheroidal and this hasrecently 
been done by the author in unpublished work. 

4. Slender body Stokes flow via cylindrical co-ordinates 
By analogy with 3 2 we might attempt a slender body theory for Stokes flow 

by representing the body by line distributions of sources and Stokes1ets.t Thus 
we could write the stream function as 

for some choice of the arbitrary functions a;(.) (describing the density of sources) 
and a2(x)  (describing the density of Stokeslets). Under similar regularity condi- 
tions on a, and a, the inner expansion may be derived from the results of 
Appendix I, giving 

@ = fUr,+aa,(x)+(a,(r)-Bu;(x))r210gr 

+ (b,(r) - &b;(x) + $u;(r))r2+O(a,r410gr, a2r410gr), (6.2) 

where b,, b, are calculated from al ,  a2 by equation (2.3). The boundary conditions 
~ = 0, a+/& = 0 on r = yo(%) give respectively 

a, = O(a2r; log T o ) ,  

2 a , ( . ~ )  log r0(x) + a2(x )  + 2b,(z) + U = 0. 

(6.3) 

(6.4) 

Terms in a,, 6,  have been dropped from (6.4) as an immediate consequence of 
(6.3). 

Equations (6.3) and (6.4) imply that a2 = O(logro)-l, a = O(r$ so that as the 
body shrinks to its limiting axis the source distribution has negligible effect 
compared with the Stokeslet distribution, which vanishes only slowly and gives 
rise t o  the inverse logarithmic behaviour of the drag. Equation (6.4) is a singular 
integral equation (when b2(cr) is written out as an integral functional of u2(z) )  of 
a particularly awkward variety which nevertheless might repay further study 
(perhaps numerical). Since only rational approximations (cf. equation (6.2)) have 
been made in its derivation, one might try expanding in a series of powers of 
l/logro, but this is a futile operation since not only are the successive approxima- 
tions of no practical use, but they will in general not satisfy the regularity 
conditions of Appendix I, which are required for the validity of (6.4). Another 
approach would be to  try solving the integral equation by expanding the 
unknown function a2(x) in terms of a suitable complete set of orthogonal 
functions; if Legendre polynomials were used for this we should expect results 
similar to those to be obtained by direct methods in the next section. 

t Distributions of sources and Stokeslets have becn used to represent slender bodies in 
a rather different context by Hancock (1953). 
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7. Slender body Stokes flow via spheroidal co-ordinates 
Since cylindrical co-ordinates have proved even less suitable for Stokes 

flow than they were for potential flow, let us try spheroidal co-ordinates. Fol- 
lowing Payne & Pel1 (1960) we represent the flow past the slender body 7 = q0(p) 
by the expansion 

for some choice of the sequences a,, A,. The drag is produced entirely by the 
contribution of the term in a, which behaves a t  infinity like a Stokeslet and gives 
a drag of 4n,u*Ulao. Now, using again the expansion (3.5) for &,(Gosh T), we have 
as the inner expansion 

( 7 . 2 )  

where 

I n  terms of the original coefficients a,, equation (7.4) states that 
W 1 W  m 

or, on multiplying by P,(p) and integrating, 
m 

(7.6) 

where the matrix elements L,, take the form 
1 

( 7 . 7 )  
1 + 2u,, 
2m+ 1 -1 

S,, being the Kronecker delta function. 
Thus, instead of the integral equation (6.4) of the previous section, the use of 

spheroidal co-ordinates leads directly to an infinite set of linear equations in an 
infinite number of unknowns a,. The problem is now effectively solved, since it is 

L,, = ~ am?, +I dPP?L(PL)p,(P)log BSO(P), 
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only necessary to evaluate the matrix elements L,, for any given qo(,u) and to 
invert the matrix equation (7.6) (presumably on a computer).t We are in general 
interested only in the first coefficient a, since this gives the drag, but it is neces- 
sary to solve the complete system (7.6) to find ao. The matrix L,, is somewhat 
simplified if log+q,(p) is a polynomial (of degree lc, 
for Im - ? L I  > k. I n  particular, for the true spheroid 
becomes wholly diagonal, and (7.6) has the solution 

2 
c( - 
- - 1 +21og &7,' 

01, = 0 ( n = l , 2 , 3 ,  ...). 

say) since then L,,, = 0 
when 7, = constant, L?,, 

so that the drag is 

in agreement with ( 5 . 2 ) .  
Since (7.6) is the result of making only rational approximations, we may 

investigate the effect of further expanding in powers of order l/logqo. Then, 
from (7.5) we have 

But if &ro(p) = q1(,u), where E is a small parameter describing slenderness and 
ql(,u) is of order unity with respect to E ,  then 

(log * ~ o ( p ) ) - 1  = (log €)-I+ O(l0g E ) y ,  

a, = - (log €)-I+ O(l0g €)y, so that 

giving a drag 

Thus as E+ 0 the drag tends to zero like - 4rrp*Ul times the reciprocal of the 
logarithm of slenderness. This result has only qualitative meaning, since E is 
arbitrary to the extent of a constant factor. 

Appendix I 
In  this Appendix we investigate the behaviour for small r of the expression 

(AI. 1) 

t This is of course an over-simplification of the numerical difficulties that might arise 
in solving (7.6). Since the matrix is infinite, we must either replace the infinite upper limit 
by as large an integer as computer capacity allows, or else use an iterative procedure. The 
question of convergence must then be considered, but while this is an interesting problem 
in itself since conditions on vo(,u) for numerical convergence would be a guide to the class 
of bodies for which the theory is valid, it is not intended to pursue the point furthcr in 
this paper. 

a)=- -  :/" d t a ( x - 5 )  (F+rZ)-& 
y -m 
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for functions a(x) which are bounded and continuous, possess bounded and 
piecewise continuous derivatives everywhere, and are absolutely integrable. Let 
us  put 

for some 6( r )  > 0. Now consider 
W )  

El = - ‘J’ d< [a(. - 6) - .(x)] ( 5 2  + r2)-B. (AI. 2 )  
2 -a ( r )  

6 

s 2  

r 

Then lEll < ;{ma,. of la(x-<)-a(x)I in < S} 

< -(max. of /a’(x-[)/ in < $1. 
Thus El = O ( P / r )  (AI. 3) 

uniformly in x, since a‘(r) is bounded in every 8-neighbourhood of every x by the 
above regularity conditions. 

Secondly, consider 

E -  d<a(x  - 6) .((<2 + r y *  - [-I}. (AI. 4) 

Then 

4 r )  
Similarly if E, = -’/ d< a(x - 6) ( (62  + r‘)-$ + <-I}, (AI. 5) 2 

then 

Thus 

i.e. E2+ E, = 0(r2 /S3)  (AI. 6) 

uniformly in x, since a(x) is absolutely integrable. 
Hence by (AI. 3), (AI. 4) and (AI. 5), we have 

(AI .  7 )  

(AI. 8 )  

where the error bounds (AI. 3) and (AI. 6) give 

E, + E ,  + E, = E, = o(syr) + 0 ( ~ 2 / s 3 ) .  
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But 6( r )  is as yet arbitrary, and we may choose it in such a way that this total 
error is small, with 6 = o ( d )  but T = o(S8). The ‘best’ order of magnitude of 6 is 
given by 

whereupon E, = O ( r i ) ,  

since any other order for 6 gives a larger order for E,. 

third terms by parts, we have 

S(r) = O@), 

Now, on integrating the first term of (AI. 7) explicitly and the second and 

But if 

6+ ( t Y + r 2 ) +  

-6+(62+r2)2 
@ = - &(x) log - - + *{a(. - S) + a(x + S)]  log 6 

then 

while if 

then 

so that 

and, finally, if 

then 

6+ (62+r2)& 482 
- + $a(.) log - E,  = - *a(x) log -- - 

- S + ( P + r 2 ) *  r2 

(AI. 9) 

(AI. 12) 

Thus = - $a,(x) log 3x2/r2 + E ,  - .(x) log S + E6 

-lorn d<(a’(x - 5) - ar (x  + t )  log $} + E,  + E, (AI. 13) 

(AI. 13) 

where b(x) is as given by (2.3) (after change of variable), and where we have now 
proved that, for the class of functions a(x) described at the beginning of this 
Appendix, the error E is at most of order r i  uniformly with respect to x. Clearly 
by further restricting the class of permitted a(.) we could find smaller error 
bounds; however, since the next term is the asymptotic expansion of @ can 
easily be seen to be of order r2 log r no non-trivial restrictions on a(x), however 
severe, can produce an error term smaller than O(r210gr). 

= a,(x) log r + b(x) + E ,  
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Appendix 11 
We wish to prove by induction the result (3.14); that is, that if 

(AII. 1) 

then f,(4 = g,P,(.)- (AII.  2) 

Now by use of the recurrence relation (Erdelyi 1953, 10.10.9) for Legendre 
polynomials, we have from (AII. 1): 

i.e. f, satisfies the inhomogeneous Legendre recurrence relation 

since the first square bracket vanishes by the Legendre recurrence relation and 
the second takes the value (m + l)-l by the definition (3.6) of the g function. 

Thus (AII. 2) is true for n = m + 1, if true for n < nt. Since it is true by inspec- 
tion for n = 0 and n = 1, this completes the proof by induction. 
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CORRIGENDUM 

‘ Departures from the linear equations for vibrational relaxation in shock 
waves in oxygen and carbon dioxide’, by H. K. ZIENKIEWICZ and 
N. H. JOHANNESEN, J .  Flu.id Jfech. 17, 1963, pp. 499-506. 

In the note added in proof on page 505, the word ‘smallest’ in the last line 
should read ‘ largest ’. 


